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Suppose every vertex of a graph G has degree k or k + 1 and at least one vertex 
has degree k + 1. It is shown that if k > 2q - 2 and q is a prime power then G 
contains a q-regular subgraph (and hence an r-regular subgraph for all r < q. r = q 
(mod 2)). It is also proved that every simple graph with maximal degree A > 2q - 2 

and average degree d > ((2q - 2)/(2q - l))(A + 1), where q is a prime power, 
contains a q-regular subgraph (and hence an r-regular subgraph for all r < q, r = q 

(mod 2)). These results follow from Chevalley’s and Olson’s theorems on 
congruences. 0 1984 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we use the theorems of Chevalley [5] and Olson [9, lo] (and 
some extensions) on congruences, to prove the existence of regular subgraphs 
of certain graphs. 

All graphs considered are finite, undirected, and contain no loops, unless 
otherwise stated. Note that we allow multiple edges. A simple graph is a 
graph without multiple edges. 
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A graph H is q-divisible if q divides the degree of every vertex of H. 
Detinef(n, q) to be the maximal number of edges of a graph G on n vertices, 
that contains no nonempty q-divisible subgraph. In Section 3 we prove that 

provided q is an odd prime power. If q is a power of 2, then 

We further show that in both inequalities equality holds for all n > 3 and 
that a graph on n > 3 vertices and e >f(n, q) edges contains at least 
2e-fh7) - 1 nonempty q-divisible subgraphs. Note that for q = 2 this is just 
the well-known fact that the dimension of the cycle space of G is at least 
e-n+ 1. 

For k < s a graph G is of type (k, s) if the degree d(v) of every vertex of it 
satisfies k < d(v) < s and G is not k-regular. In Section 4 we show that if q is 
a prime power, q > r, q = r (mod 2) and k > 2q - 2 then every graph G of 
type (k, k + 1) contains an r-regular subgraph. In particular: 

Every 4-regular graph plus one edge contains a 3-regular subgraph. (1.1) 

This result is closely related to a well-known conjecture of Berge and 
Sauer (see, e.g., [4, p. 2461) that asserts that every 4regular simple graph 
has a 3-regular subgraph. Some positive results about this conjecture can be 
found in [6], and in [ 111 Taikinov announced that he verified it. However, 
the Berge-Sauer conjecture is false for graphs with parallel edges; (every 
graph obtained from an odd cycle by replacing every edge by two parallel 
edges forms a counterexample). Therefore, the “plus one edge” cannot be 
omitted in (1.1). A short derivation of (I. 1) from Chevalley’s theorem 
appears separately in [ 11. 

In Section 4 we also show that if q is a prime-power, q > r and q = r 
(mod 2) then every simple graph G with maximal degree d > 2q - 2 and 
average degree d > ((29 - 2)/(2q - l))(d + 1) contains an r-regular 
subgraph. In particular, every simple graph with maximal degree d > 4 and 
average degree d > $(d + 1) contains a 3-regular subgraph. This result may 
help in solving a long standing problem of Erdiis and Sauer (see, e.g., [2, 
p. 399, problem 201). They asked for an estimation of the maximal number 
of edges of a simple graph on n vertices that contains no 3-regular subgraph. 

Our paper is organized as follows. In Section 2 we describe the algebraic 
tools: we quote the theorem of Olson, show how it is related to the classical 
theorem of Chevalley, and obtain a simple corollary. In the Appendix we 
prove an extension of Olson’s theorem and apply it to graph theory. Our 
proof is different from Olson’s proof and is somewhat similar to the proof of 
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Chevalley’s theorem given in [5]. In Section 3 we derive the results on 
q-divisible subgraphs and in Section 4 we combine these with known results 
of Petersen, TaOkinov, Thomassen, Tutte, and Vizing to obtain our results on 
regular subgraphs. 

2. THE ALGEBRAIC TOOLS 

Our main algebraic tool in this paper is the following result of Olson [9]. 

THEOREM 2.1 (Olson). Let p be a prime and suppose d, > d, > . . . > 
d, > 0. For 1 < i < m let a”’ = (a?‘, a:“,..., a’,“) be a vector with integer 
coordinates. If 

m > k (pdj- l) 
j=l 

then there exists a subset 0 # Z c ( 1,2,..., m) such that 

c {a;“: i E I} E 0 (modpdi), j = l,..., n. (2.1) 

It is worth noting that for d, = d, = ..a = d, = 1 it is possible to derive 
this result from the classical theorem of Chevalley (see, e.g., [5]). Indeed 
consider the following system of polynomial equations 

1$, aji’xf-’ = 0 (modp), j= I,..., n. 

Clearly xi = 0 is a solution. Since the left-hand side of each equation is of 
degree p - 1 at most, the Chevalley’s theorem ensures a nontrivial solution if 
m > (p - 1) it. As xp-’ = 1 (mod p) for x f: 0 (modp), the existence of a 
nontrivial solution implies the assertion of Theorem 2.1 in this case. 

In the Appendix we prove a generalization of Olson’s theorem. Our proof 
is different from Olson’s proof and is somewhat similar to the proof of 
Chevalley’s theorem given in [5]. 

COROLLARY 2.2. Suppose d, 2 d, > ... > d, > 1 and let p and a”’ 
(1 < i( m) be as in Theorem 2.1. If 

i a;!) G 0 (modp) 
j=l 

for i = 1, 2,..., m 
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and 
n-1 

m  >p4-I - l+ x (pdj-1) 
j=l 

then the conclusion of Theorem 2.1 holds. 

ProoJ For every 1 < i < m, define a vector b”’ = (bli),..., bc’) as follows: 
bji) = asi’ for 1 <j < n - 1 and bt’ = l/p CJ= I ali’. Applying Theorem 2.1 
to the vectors b”), we conclude that there exists a subset 0 # Z c ( l,..., m) 
such that 

C {aj”: i E I} = c {bji): i E I) s 0 (modpdj) for 1 <j<n- 1, 

and 

‘V ! e aj”:iEZ 
P L l,% 

=x {b~‘:iEZ}-O(modpdn-‘), 

i.e., c{J$=i aji): i E I} = 0 (mod pdn). Since d, > d, > e a. > d, , we conclude 
that C{aj”: i E I} E 0 (modpdj) for all 1 <j < n. B 

It is worth noting that both Theorem 2.1 and Corollary 2.2 are best 
possible. Indeed, let e”’ be the standard vector (Sj, ,..., Sj,), j = l,..., It. A set 
of pdj - 1 copies of e”’ for 1 <j < n shows that Theorem 2.1 is best possible. 
A set of pdj - 1 copies of e(j) - e’“’ for 1 Q j < n - 1 plus p d,-1 - 1 copies of 

pe W) shows that Corollary 2.2 is best possible. 
Theorem 2.1 and Corollary 2.2 can be used to prove the existence of one 

0 # z c { 1, 2,..., m} that satisfies (2.1). Combining them with the following 
proposition of Olson [lo] we conclude that if m is large enough there are 
many such Is. 

PROPOSITION 2.3 (Olson). Let H be an abelian group and suppose that 
for every h I ,..., h,, , E H there exists a subset 0 # Z c { l,..., g + 1) such that 

c (hi: i E I} = 0. (2.2) 

Zfh , ,..., h,,, E H and I > 1, then there exist at least 2’ - 1 distinct subsets Z, 
0fzc {l,..., g + I} that satisfy (2.2). 

3. q-DIVISIBLE SUBGRAPHS 

Our main task in this section is to estimate the function f(n, q) defined in 
Section 1. Recall that f(n, q) is the maximum number of edges of a graph G 
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on n vertices that contains no nontrivial q-divisible subgraph. Clearly 
f(n, 1) = 0 and f(n, 2) = n - 1. The following theorem is an easy conse- 
quence of Theorem 2.1 and Corollary 2.2. 

THEOREM 3.1. 

ft%4)<(4--1)*n if q = pd where p is an odd prime 

<(4-1).n-t@) if q = 2d. 
(3-l) 

ProoJ Suppose q = pd, where p is an odd prime, and let G = (V, E) be a 
graph with ( Y( = n and (El = m > (q - 1) . n. We must show that G contains 
a nontrivial q-divisible subgraph H. 

For v E V and e E E, define a:’ = 1 if u E e and a:’ = 0 otherwise. Put 
v= {VI, u*,..., v,} and define, for e E E, a’“’ = (a:‘,..., a$. By Theorem 2.1 
with d, = d, = . . . =d, =d there exists a set E’, 0fE’ cE such that 
C{affl’; e E E’) = 0 (mod q) f or all 1 <j < n. The graph H = (V, E’) is a 
nontr:vial q-divisible subgraph of G. This proves the theorem for odd q. If 
q= 2d, we use the same argument with Corollary 2.2 instead of 
Theorem 2.1. I 

We now show that Theorem 3.1 is best possible for all n > 3. Define 

g(n,k)=(k- 1)-n if k is odd, 

=(k-l)*n-(k/2) if k is even. 

For an odd integer k > 1 let G,(k) denote the Shannon triangle obtained 
from a triangle by replacing each edge by k - 1 parallel edges. Similarly, for 
even k, let G,(k) be the graph obtained from a triangle by replacing two 
edges by k - 1 parallel edges each and the third edge by (k/2) - 1 parallel 
edges. For n > 3 let G, = (V,, E,J be a graph obtained from G,(k) by adding 
to it n - 3 new vertices and joining each by k - 1 edges to vertices of G,. 
Clearly 1 V,l = n and JE,I = g(n, k). One can easily check that G, contains 
no nontrivial k-divisible subgraph. Combining this with Theorem 3.1 we 
obtain 

PROPOSITION 3.2. (i) For n > 3 and every k, f(n, k) > g(n, k). 

(ii) If q is a prime power then f(n, q) = g(n, q). 

There is some interest in considering separately the case of simple graphs. 
Thus we definef,(n, q) as the maximal number of edges of a simple graph G 
on n vertices that contains no nontrivial q-divisible subgraphs. Clearly 
f,(n, q) <f(n, q). The next proposition shows that for an odd prime power q 
and n > q* - 1 equality holds. 
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PROPOSITION 3.3. (i) For every odd integer k > 1 and every n > k2 - 1 

f,h k) > g(n, k) = (k - 1) . n. 

(ii) If q is an odd prime power and n > q2 - 1 then 

f,(n,q)=g(n,q)=(q-l).n. 

Proof. Part (ii) follows immediately from (i) and Theorem 3.1. To prove 
part (i) we construct a suitable example. 

Let tG denote the disjoint union of t copies of the graph G. Let G + H 
denote the join of the graphs G and H, i.e., the graph obtained from their 
disjoint union by joining each vertex of G to each vertex of H. Let Ek-, be 
the graph consisting of k - 1 isolated vertices, let K,,,- , denote the star with 
k - 1 edges and define 

G,,=JIZ~-~ + (k- l)Kl,+l. 

Suppose n > k2 - 1. Let G = (V, E) be a graph obtained from G, by 
adding to it n - (k2 - 1) new vertices and joining each of them to k - 1 
vertices of G,. One can easily check that 1 VI = n and 1 E I= (k - 1) . n. In 
order to complete the proof we must show that G contains no nontrivial 
k-divisible subgraph. Clearly it is enough to show that G, contains no such 
graph. G, has vertices of three different types: let us call these of degree 
k(k - 1) vertices of type 1, these of degree 2k - 2- of type 2, and these of 
degree k- of type 3. Suppose G, has a nontrivial k-divisible subgraph H = 
(Y’, E’), where dH(v) > 0 for all v E V’. 

We claim that V’ contains all k - 1 vertices of type 1. Indeed, otherwise 
V’ contains no vertex of type 3 (since its degree in H is <k) and thus no 
vertex of type 2, which is impossible. Similar reasoning shows that if V’ 
contains some vertex of type 3 then it must contain all its k neighbours, and 
in particular its unique neighbour of type 2. Let x1, x2 ,..., x, (r < k - 1) be 
all the type 2 vertices in V’ and let qi be the number of type 3 vertices of H 
adjacent to xi (1 < i < r). Since each type 3 vertex in H is adjacent to all 
type 1 vertices we conclude that the degrees (in H) of any two type 1 
vertices can differ by at most r < k - 1. Since all degrees are divisible by k 
this shows that all these degrees are equal. Thus the number N of edges from 
the type 1 vertices to all other vertices of H is 0 (mod(k(k - 1))). 

However, the degrees of all type 2 and type 3 vertices of H (in H) is 
exactly k. Therefore N = C;= ,(k - qi) + CT= ,(k - 1) qi. Reducing modulo k 
we conclude that -2 CT=, qi = 0 (mod k) and since k is odd and 1 < qi < k 
this implies that CT= 1 qi = 1. k for some 1, 0 < I< r < k - 1, which implies 
Cfzlqi-l (mod(k- 1)). R e d ucing the equation for N modulo k - 1 (recall 
that k - 1 1 N) we conclude that CT=, qi E r (mod(k - 1)) & 1 (mod(k - l)), 
which is the desired contradiction. This completes the proof. I 
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By Proposition 3.2 if q is a prime power then f(n, q) = g(n, q). The next 
theorem considers the extremal examples.- 

THEOREM 3.4. Let G = (V, E) be a graph with n vertices and g(n, q) 
edges. Suppose G contains no nontrivial q-divisible subgraph. If q is an odd 
prime power, then for every integral vector f = (f, ,..., f,) # 0, G contains a 
subgraph H such that 

de&vi) sfi (mod 9) for i = I,..., n. (3.2) 

Zf q = 2k, (3.2) holds iff, + ... + f, is even. 

Proof Let A = (a@‘, e E E} be the set of vectors defined in the proof of 
Theorem 3.1. Our theorem follows by applying Theorem 2.1 and 
Corollary 2.2 to the set of vectors A U {-f } and by using the assumption 
that G contains no nontrivial q-divisible subgraph. i 

Combining Theorem 2.1, Corollary 2.2, and Proposition 2.3 one can easily 
obtain the following stronger version of Theorem 3.1. 

THEOREM 3.5. If q is a prime power and G is a graph with n vertices 
and e = g(n, q) + I edges, where I > 1, then G contains at least 2’ - 1 
nontrivial q-divisible subgraphs. 1 

Note that since a 2-divisible subgraph is just an Eulerian-subgraph, for 
q = 2 the last theorem is the well-known fact that the dimension of the cycle 
space of G is at least e - n + 1. 

Remark 3.6. Let G = (V, E) be a directed graph. For e E E and v E V 
put a:‘= + 1 (-1) if e goes out of (into) v and a:,@ = 0 otherwise. If V = 

{V , ,***, v,,} define a’@ = (at’,..., a:). Since ,JJj”=, aI;’ = 0, one can apply 
Theorem 2.1 to the vectors (a!:‘,..., a~~‘-,) and show that if q is a prime power 
(even or odd) and JE 1 > (q - 1) e (n - 1), then G contains a subgraph H 
such that q 1 d,+(v) - d;(v) for all u E V. This easily implies that every 
bipartite graph G with n vertices and more than (q - l)(n - 1) edges 
contains a nontrivial q-divisible subgraph. 

We close this section with a conjecture. 

Conjecture 3.1. For every n > 3 and every k 

f(n, k) < (k - 1) . n. 
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4. REGULAR SUBGRAPHS OF ALMOST REGULAR GRAPHS 

Recall the definition of a graph of type (k, s) given in Section 1. Here we 
prove the following. 

THEOREM 4.1. Let G be a graph of type (k, k + 1) and let r be an 
integer, If q is a prime power, q > r, q = r (mod 2), and k > 2q - 2 then G 
contains an r-regular subgraph. 

THEOREM 4.2. Let G be a graph of type (k, k + 2) and let r be an 
integer. If q is a prime power, q > r, q E r (mod 2), and k > 2q - 1 then G 
contains an r-regular subgraph. 

Note that by Bertrand’s postulate (for every r there is a prime between r 
and 2r), Theorem 4.2 implies that if k > 4r then every graph of type 
(k, k + 2) contains an r-regular subgraph. In fact, the known improvements 
of Bertrand’s postulate (see, e.g., [2, p. xx]) enable one to show that 
Theorem 4.2 implies that for every E > 0 if r > r(s) is odd and k > (2 + E) r 
then every graph of type (k, k + 2) contains an r-regular subgraph. 
Shannon’s triangle obtained by replacing each edge of a triangle by r - 1 
parallel edges shows that this is close to being best possible. 

For simple graphs we prove 

THEOREM 4.3. If q is aprimepower, q > r, and q s r (mod 2) then every 
simple graph G with maximal degree A > 2q - 2 and average degree d > 
((29 - 2)/(2q - l))(A + 1) contains an r regular subgraph. 

These theorems are proved by combining Theorem 3.1 with results of 
Petersen, TaBkinov, Thomassen, Tutte, and Vizing. In what follows we state 
these results and prove our theorems. 

LEMMA 4.4 (Thomassen [ 121, a somewhat weaker version was proved by 
Tutte [ 131.). Let G be a graph of type (k, k + 1) and suppose 0 < r < k. 
Then G contains a spanning subgraph of type (r, r + 1). 

LEMMA 4.5 (Proved by Petersen [4, p. 751 for even k, and by Taikinov 
[ 111 for odd k.). If k > r, k = r (mod 2), then every k regular graph 
contains an r regular subgraph. 

Proof of Theorem 4.1. By Lemma 4.4, G contains a (spanning) subgraph 
L=(V,E) of type (2q-2,29-l). Clearly ]E]>f.]v] (2q-2)= 
(q- 1). IV]. Th ere ore, f by Theorem 3.1, L contains a nontrivial q-divisible 
subgraph H. However, for every v E V deg,(v) Q deg,(v) < 2q - 1 and thus 
H is q regular. The result now follows from Lemma 4.5. 1 



REGULARSUBGRAPHS 87 

For the proof of Theorem 4.2 we need 

LEMMA 4.6. Let G be a graph of type (k, k + 2) and suppose 0 < I < 
k - 2. Then G contains a spanning subgraph of type (r, r + 2) with average 
degree strictly greater than r + 1. 

Outline of Proof The proof is very similar to the proof of Thomassen 
[ 121 to Lemma 4.4. His argument easily shows that G contains a spanning 
subgraph L of type (r + 2, r + 4). The same argument shows that L contains 
a spanning subgraph H of type (r + 1, r t 3) with at least one vertex of 
degree r + 2, and that H has a spanning subgraph of type (r, r t 2) with 
more vertices of degree r t 2 than vertices of degree r. We omit the 
details. 1 

Proof of Theorem 4.2. By Lemma 4.6, G contains a (spanning) subgraph 
L=(V,E)oftype(2q-3,2q-l)withIEl>(q-l)1VI.Thissubgraph,as 
is shown in the proof of Theorem 4.1, contains an r-regular subgraph. a 

For the proof of Theorem 4.3 we need the following well-known result of 
Vizing (see, e.g., (2, pp. 230-2321). 

LEMMA 4.7 (Vizing). The edges of every simple graph with maximal 
degree A can be covered by A t 1 disjoint matchings. 

Proof of Theorem 4.3. $ y L emma 4.7 the edges of G = (V, E) can be 
covered by A t 1 disjoint matchings. Let L = (V, E’) be the graph on V 
consisting of the edges of the 2q - 1 biggest matchings. Clearly 

IE’l>~~E~=~.+d.lP’ 

(2q-1)(2q-2)(A+1)~Y~=(q-1)/YI. > 2(A t 1) (2q - 1) 

By Theorem 3.1, L contains a nontrivial q-divisible subgraph H, which is, as 
in the proof of Theorem 4.1, q-regular. The result follows from 
Lemma 4.5. I 

Remark 4.8. (a) We can slightly improve the constant (2q - l)/ 
(2q - 2) in Theorem 4.3 but this makes the proof somewhat more com- 
plicated. 

(b) Remark 3.6 and Kiinig’s theorem (see, e.g., [4, p. 93, 
Theorem 6.11) enables us to obtain the following improvement of 
Theorem 4.3 for bipartite graphs: If q is a prime power, q > r then every 
bipartite graph G with maximal degree A and average degree d > ((2q - 2)/ 
(2q - 1)) A contains an r-regular subgraph. 
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(c) Combining the result of [8] with Theorem 4.2 one can easily 
prove the following: 

Let G be a graph of type (k, k + s) and let r be an integer. If q is a prime 
power, q > r, q- r (mod 2), k> 2q - 1, and s/k < 2/(2q - l), then G 
contains an r-regular subgraph. 

APPENDIX 

In this Section we prove a generalization of Olson’s theorem 
(Theorem 2.1), and apply it to graph theory. 

Let Z be the set of integers. For S c Z and m E Z, let card,(S) denote the 
number of distinct elements in S modulo m. The main result in this section is 

THEOREM A. 1. Let p be a prime and let d, > d, > . . . > d, be n positive 
integers. For 1 <j< n let Sj c Z be a set of integers containing 0. For 
1 < i < m let a”’ = (a?‘,..., at’) be a vector with integer coordinates. If 

n 
m > x (pdj - card,,(Sj)), 

j=l 

then there exists a subset 0 #I c { 1,2,..., m} and numbers Sj E S,i 
(1 <j < n) such that 

1 {uji): i E I} = sj (modpdj) for l<j<n. @*I) 

In order to prove the theorem, we need two simple lemmas. 

LEMMA A.2. Let P be a multilinear polynomial in m variables x, ,..., x, 
over a ring R, (i.e., P= C{au nieuxi: UC { 1, 2 ,..., m}} where aL, E R). Zf 

P(x , ,..., xm) = 0 for all xi E (0, 1 }, then P = 0. 

ProoJ: The result follows easily by induction on m. fl 

For a prime power q = pd, y E Z, and T E Z, define 

ti(y,q,T)=n {(y-i)]i:O<i<qandift(modq)foralltfT)~ 

d-l 

c(q)= c (P”-1). 
k=O 

LEMMA A.3. Let q = pd be a prime power. Let T c Z satisfy card,(T) = 
1 TI. Zf c = c(q), then for every integer y, pc 1 u( y, q, T) and pc+ ’ ~ZJ( y, q, T) lfl 
y z t (mod q) for some t E T. 

ProoJ Consider the product Q = n{(y - i): 0 Q i < q}. This is a 
product of pd consecutive integers. Clearly, exactly pd-j of them are divisible 
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by 8 (1 <j < d); u(y, q, T) is just the product Q without 1 TI factors. Since 
1 TI = card,(T) a most one of these missing factors is a multiple of p. t 
Therefore, in the product u(y, q, T) at least pd-j - 1 elements are divisible 
by p’ (l<j<d) and thus p’Iu(y,q,T). Obviously p’+‘tu(y,q,T) iff 
exactly pd-j - 1 of these elements are divisible by pi (1 <j < d), i.e., iff no 
element is divisible by pd. This happens iff one of the missing factors is a 
multiple of pd, i.e., iffy = t (mod q) for some t E T. 1 

Proof of Theorem A. 1. For 1 (j < n put qj =pdj and define c = 
Cy=I c(qj). Assume the assertion of the theorem is false and let Sj 
(1 <j<nn) and a”’ (1 < i < m) be a counterexample. For 1 <j < n let 
Tj c Sj satisfy 0 E Tj and 1 Tjl = card,(Tj) = card,(Sj). Consider the 
polynomial with the m variables {xi: 1 < i < m) 

p = P(x,, x2 ,..., Xm)= fi u ( ? aj”xi,qj, T,). 
j=l (71 

Since 0 E Tj, Lemma A.3 implies that p”‘~P(0, O,..., 0). Suppose xi E (0, 1) 
are not all zeros. Since a”’ and Sj do not satisfy (A-l), there exists an index 
1 <j< n such that CrZI aji’Xi f t (mod qj) for all t E Tj and thus, by 
Lemma A.3 pc+’ 1 P(x , ,..., x,). Therefore, if R is the ring of integers modulo 
P ‘+ r and P is considered as a polynomial over R, then if xi E { 0, 1) are not 
all zeros, then P(xl ,..., x,,J = 0 (in R) and P(0, 0 ,..., 0) = P, # 0. Let Pbe the 
multilinear polynomial obtained from P by changing every monomial 
q, niauxfi in th e standard representation of P to a, nieuxi. Clearly if 
xi E (0, I\, then P(x, ,..., x,,J = p(x, ,..., xm). Therefore the multilinear 
polynomial p- P, nr! r( 1 - Xi) satisfies the hypotheses of Lemma A.2 and 
thus P= P, ny! r( 1 - xi). However, this is impossible since 

deg P< deg P < 5 (qj - ( Tjl) = c (qj - card,(Sj)) < m 
j=1 ,e, 

=deg (pII ,fi (1 -xi)). 

This contradiction establishes the theorem. 1 

Using Theorem A.1 instead of Theorem 2.1 and Corollary 2.2, one can 
prove the following generalization of Theorem 3.1. 

THEOREM A.4 Let p be a prime, let d, ,..., d,, be positive integers and put 
qj =pdi. For 1 <j < n, let Sj c Z be a set containing 0. Suppose G = (V, E) 
is a graph with V = (v, ,..., v, }. If 

IE 1 > i (pdi - card,(Sj)), 
j=l 
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then G contains a nontrivial subgraph H = (V, E’) such that for 1 ,< j < n, 

deg,(vJ = sj (mod qj) for some sj E Sj. 

We close the paper with the following conjecture that implies Conjec- 
ture 3.7. 

Conjecture A.5. For 1 < i < m, let a”’ = (a?),..., a:‘) be a vector with 
integer coordinates. Let k be a positive integer. If m > (k - 1) n, then there 
exists a nonempty subset I c (l,..., m} such that 

C {a;“: i E I} = 0 (mod k) 

Remark A.6. Baker and Schmidt [3] proved that the assertion of 
Conjecture A.5 holds if m > c(k) n s log n. This implies, of course, that 
f(n, k) < c(k) n . log n. 

It is also worth noting that if p1 ,..., p, is a set of positive integers such that 
Pj IPj-l G= %-9 n), then it is possible that the system 

f aj”xi E 0 (modpj), j= l,..., 4 xi E {OF l )v 
i=l 

will not have a nontrivial solution even if 

m> 5 (pj-1). 
j=l 

See, for example, [7]. 
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